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Abstract

Rapid advances in VLSI technology have led to Field-
Programmable Gate Arrays (FPGAs) being employed in
High Performance Computing systems. Applications using
FPGAs on reconfigurable supercomputers involve software
on the system managing computation on the reconfigurable
hardware. To extract maximum benefits from a parallel
FPGA kernel at the application level, it becomes crucial
to minimize data movement costs on the system. We address
this challenge in the context of the All-Pairs Shortest-Paths
(APSP) problem in a directed graph. Employing a parallel
FPGA-based APSP kernel with a blocked algorithm, with
appropriate optimizations, the application-level speedup of
the FPGA-based implementation over a modern general-
purpose microprocessor is increased from 4x to 15x for all
problem sizes.

1 Introduction

Field Programmable Gate Arrays (FPGAs) have long
been used in embedded image and signal processing ap-
plications. With rapid advances in modern VLSI technol-
ogy, FPGAs are becoming increasingly attractive to a much
wider audience, in particular, to the High Performance
Computing community. Modern FPGAs have abundant re-
sources in the form of tens of thousands of Configurable
Logic Blocks (CLBs), a large amount of on-chip memory,
and growing numbers of other special-purpose resources.
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High bandwidth to off-chip memory is sustained through
parallel memory access using the large number of I/O pins
available on an FPGA. All of these factors allow FPGAs
to extract a large amount of parallelism apart from effec-
tively reusing data. Reconfigurability allows very efficient
use of available resources tailored to the needs of an appli-
cation. This makes it possible for custom-designed parallel
FPGA implementations to achieve significant speedup over
modern general-purpose processors for many long-running
routines. This increase in performance has led to the appli-
cation of FPGAs in HPC systems. Cray and SRC Comput-
ers already offer FPGA-based high-performance computer
systems [4, 8] that couple general-purpose processors with
reconfigurable application accelerators.

Complete FPGA-based solutions on reconfigurable su-
percomputers like the Cray XD1 involve FPGA kernels in-
tegrated with user-applications running on the system. Lim-
ited resources on the FPGA often necessitate a blocked
algorithm for the problem. This is particularly true for
many sparse and dense linear algebra routines [19, 18].
Large instances of the problem would have to be solved
by employing a parallel FPGA kernel iteratively. Parallel
FPGA kernels often yield significant speedup. Therefore,
in many cases, it becomes important to orchestrate move-
ment of subsets of data (tiles) so that benefits are reflected
at the application level. For some scientific routines in-
volving floating-point double-precision data, performance
of current day FPGAs may not be high enough to make
system-side optimizations crucial. This is true for BLAS
level-3 routines like Matrix Multiplication [20]. However,



with current trends in double-precision floating-point per-
formance [13, 14] of FPGAs, FPGA performance would
eventually reach a level to make these optimizations ben-
eficial for all FPGA-based routines.

The Floyd-Warshall (FW) algorithm used to solve the
All-Pairs Shortest-Paths problem involves nested code that
exhibits a regular access pattern with significant data de-
pendences. In the context of FW, we propose approaches
that solve the following problem: Given an FPGA kernel
that achieves a high speedup over a modern general-purpose
processor on a small dataset (tile/block size), what opti-
mizations at the system would help translate a high percent-
age of this speedup at the application-level for large prob-
lem sizes? The parallel kernel we use is from our previous
work [1]. With appropriate design choices and optimiza-
tions, the application-level speedup for FW is increased
from 4x to 15x for large graphs. We build a model that ac-
curately captures performance of the design, and provides
insights into performance and bottlenecks.

The rest of this paper is organized as follows: In Sec-
tion 3, we give an overview of the Cray XD1 followed by
an overview of the All-Pairs Shortest-Paths problem, the
FW algorithm and the FPGA-based FW design developed
in [1]. In sections 4 and 5, we discuss a few design choices
and propose techniques to reduce data movement costs on
the system. In Section 6, we present results of our experi-
ments on the Cray XD1 and analyze performance in detail.

2 Related Work

The Floyd-Warshall algorithm was first proposed by
Robert Floyd in [6]. Floyd based his algorithm on a the-
orem of Warshall [16] that describes how to compute the
transitive closure of boolean matrices. Venkataraman et al.
proposed a blocked implementation of the algorithm to op-
timize it for the cache hierarchy of modern processors[15].

Apart from the Floyd-Warshall algorithm, All-Pairs
Shortest-Paths (APSP) algorithms with lower time com-
plexity exist. Karger [9] solved undirected APSP with non-
negative edge-weights in O(Mn -+n”logn) time, where 7 is
the number of vertices in the graph and M is the the num-
ber of edges participating in shortest-paths. Zwick [10] ob-
tained an O(n%>73) APSP algorithm where the dependence
of the running time is polynomial in the maximum magni-
tude of the edge weights. It is thus only effective when the
edge weights are integers of small absolute value.

Researchers have recently demonstrated the competi-
tiveness of FPGAs with modern processors for double-
precision floating-point arithmetic and dense linear alge-
bra operations, showing them to be an attractive option for
high-performance scientific computing [14, 13, 21, 18]. All
of these works involve proposing parallel designs followed
by an analysis of design trade-offs and performance projec-
tion. In [11], Tripp et al. consider some of the integration

aspects related to hardware/software codesign on reconfig-
urable supercomputers using a traffic simulation FPGA ker-
nel [12]. Our work addresses different issues that arise in
combining software with high performance reconfigurable
hardware for a class of applications.

In [1], we proposed a parallel FPGA-based design for
FW to process a tile efficiently. The implemented kernel
is suitable for accelerated solution of large APSP problem
instances using a blocked algorithm [15].

3 Overview

3.1 Cray XD1 Overview

A Cray XD1 system is composed of multiple chassis,
each containing up to six compute blades. Each com-
pute blade contains two single- or dual-core 64-bit AMD
Opteron processors, a RapidArray processor which pro-
vides two 2-GBps RapidArray links to the switch fabric,
and an application acceleration module [4, 7] (Fig. 1).

The application acceleration module is an FPGA-based
reconfigurable computing module that provides an FPGA
complemented with a RapidArray Transport (RT) core pro-
viding a programmable clock source, and four banks of
Quad Data Rate (QDR) II SRAM. Cray presently offers a
choice between several members Xilinx Virtex-II Pro and
Virtex-4 families of FPGAs on the XD1. Cray provides an
API that includes functions to program the FPGA, write val-
ues and addresses to registers on the FPGA, taking care of
virtual to physical address translation in the latter case.
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Figure 1. Cray XD1 System
3.2 The All-Pairs Shortest-Paths Problem

Given a weighted, directed graph G = (V,E) with a
weight function {w : E — R}, that maps edges to real-
valued weights, we wish to find, for every pair of vertices u,
v € V, a shortest (least-weight) path from u to v, where the
weight of a path is the sum of the weights of its constituent
edges. Output is typically desired in tabular form: the entry
in u’s row and v’s column should be the weight of a shortest
path from u to v.

3.3 Floyd-Warshall algorithm Overview

The Floyd-Warshall algorithm uses a dynamic program-
ming approach to solve the all-pairs shortest-paths problem



1: for k< 1,N do

2 fori— 1,N do

3 for j — 1,N do

4: d[i, j| < min (d[i, j], d[i,k] + d[k, j])
5 end for

6 end for

7: end for

8: Output: d

Figure 2. The Floyd Warshall Algorithm

on a directed graph [3, 6, 16]. It runs in ®(|V|3) time. Let

0 ifi=j,
wij = ¢ weight of edge (i,j) ifi# jand (i,)) €E,
oo ifi## jand (i,j) ¢ E.

Let d;f) be the weight of a shortest path from vertex i to
vertex j for which all intermediate vertices are in the set
{1,2,...,k}. For k =0, we have d?j = w;j. A recursive

definition from the above formulation is given by:

W= min (df i vl ) itk

The matrix {df}' }, 1 <i,j <N gives the final result. The
above recursive definition can be written as a bottom-up
procedure as shown in Fig. 2. As can be seen in Fig. 2,
the code is tight with no elaborate data structures, and so
the constant hidden in the ®-notation is small. Unlike many
graph algorithms, the absence of the need to implement any
complex abstract data types makes FW a good candidate for
acceleration with an FPGA.

3.4 Overview of Parallel Blocked FW kernel

In this section, we give a brief description of the parallel
FPGA-based FW kernel that we designed in [1].

In the FW computation, we have exactly N? data ele-
ments, but ®(N3) computations to perform. Hence, there is
high temporal locality that a custom design can exploit. The
FW nested code has significant data dependences. Extract-
ing parallelism in the presence of these dependences with-
out data access conflicts making maximum use of available
FPGA resources is a major challenge.

Let d be the distance matrix of a directed graph of B
nodes. In the nested loop code shown in Fig. 2, at any iter-
ation k = r of the outer loop, the vectors, d|r, x| and d[*,r],
update the whole matrix d. We call this row and column,
the pivot row and the pivot column, respectively. In order
to extract parallelism from the k loop, the computation was
reorganized into a sequence of two passes: first compute the
set of pivot rows and columns, and then use the stored pivot
rows/columns to compute the updates to matrix elements in
a streamed fashion. This approach enabled the creation of a

simple and modular design that maximizes parallelism. The
design scales well when — (1) larger FPGAs are employed,
or (2) greater I/O bandwidth to the system is available.
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Figure 3. Parallel FW Kernel Architecture

Fig. 3 shows the architecture. A linear array of B PEs
is used to perform FW on a BxB matrix. Each PE has [
operators where each operator comprises a comparator and
an adder. The " PE stores the 7 pre-computed pivot row
and column, and the work it performs corresponds to the
computation in the iteration k = r of the outer loop of FW.
The first and the last PE read and write data respectively,
from/to the I/O engine. The design is a streaming one, with
read, compute and write pipelined.

I represents the doAll parallelism in each PE and is gov-
erned by the I/O bandwidth and the size of the distance ma-
trix elements. B is constrained by the amount of FPGA re-
sources. The product of B and [ is the degree of parallelism
of our design, and this was maximized under resources con-
straints using a model.

The FW kernel described above can handle only matri-
ces of size BxB. For the general case of NxN matrices, we
extended the kernel for a blocked algorithm proposed by
Venkataraman et al. in [15] with minor changes.
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Figure 4. Tiled implementation proposed in
[15]

In this extended FW kernel, four kinds of tiles exist de-
pending on the source of the pivot rows and columns that
update a particular tile (see Fig. 4):

1. Self-dependent: pivot row and column are pre-
computed from the same tile (the original case)



2. Partial row-dependent: pivot rows come from a dif-
ferent tile while pivot columns are computed from the
same tile

3. Partial column-dependent: pivot columns come from a
different tile while pivot rows are computed from the
same tile

4. Doubly-dependent: both the pivot rows and columns
come from distinct tiles.

The optimal values for B and / for the XD1 FPGA (Xilinx
XC2VP50) were determined to be 32 and 4 respectively,
for a precision of 16 bits. Table 1 shows the speedup of the
FPGA kernel for processing a single tile.

Tile FPGA-FW| CPU-FW | Measured | Resource
Size measured | (Opteron)| speedup utilization
8x8 0.42 us 1.60 us 3.8x 34%
16x16 || 1.29 us 14.1 us 11x 52%
32x32 || 4.84 us 106.5 us | 22x 90%

Table 1. FPGA-FW: Resource utilization and
speedup on the Xilinx XC2VP50.

4 Design Choices and Implementation

In this section, we discuss some of the design and im-
plementation issues in integrating the parallel FPGA kernel
with software on the system.

4.1 Extending for any graph size

With the approach described in the previous section, we
can handle a graph with a multiple of kernel tile size num-
ber of nodes. Any arbitrary size can be trivially solved by
padding the distance matrix with oo (the largest value within
the supported precision) to the next higher multiple of tile
size. This is equivalent to adding additional disconnected
nodes to the graph.

4.2 Data Movement and Communication

A specially allocated communication buffer that is
pinned to the system’s memory is used for transfer of data
to/from the FPGA. The I/O engine (Fig. 3) on the FPGA
transfers data of specified length to/from contiguous regions
in the communication buffer. We split the buffer into two
parts as shown in Fig. 5. The source and destination buffer
addresses, amount of data to be transferred to/from these
buffers, and the type of tile that is to be processed is com-
municated using a special set of registers. A write to the
register meant for the destination buffer address triggers
the computation on the FPGA. Completion is indicated by
setting a register bit on the FPGA which the CPU polls.
All of this overhead is incurred for each compute request

made to the FPGA. Once the computation starts, all of the
tiles placed in the source buffer are processed successively.
As the computation for successive tiles is overlapped in
the FPGA design (Sec. 3.4), the overhead associated with
making the compute request is hidden when a large enough
number of tiles are processed successively.

Communication buffer

on system
To FPGA
(pull)
Matrix
Copy Tiles
I~ Source

buffer

From

3X
FPGA
Destination (push)
[ buffer ﬂ

Figure 5. Communication buffer model

Allowing the FPGA to do the read and write from the
communication buffer on the system’s memory frees the
CPU for other tasks. In particular, it provides us the op-
portunity to use the CPU to copy tiles between the matrix
and the communication buffer while the FPGA is comput-
ing. We discuss this in Sec. 5.2.

The parallel FPGA kernel described in Sec. 3.4 was used
iteratively taking care of dependences. All tiles of a par-
ticular kind (self-dependent, partial row/column dependent
and doubly-dependent) are processed successively. Hence,
in each of the N/B rounds of the blocked algorithm, the
self-dependent tile is processed first followed by the sets of
partially row and column-dependent tiles. This is followed
by the processing of doubly-dependent tiles. Fig. 4 shows
the different kinds of tiles in a particular round. In order
to process a tile, the tile along with the pivot row and col-
umn elements is copied to the source buffer on the system
interleaved in the fashion required by the kernel (Sec. 3.4).
The compute request is then made to the FPGA. Hence, for
a set of k BxB tiles that need to be processed successively,
3B%k matrix elements are copied to the source buffer by the
CPU. The FPGA reads from the source buffer and writes
back the result tiles comprising B’k elements to the desti-
nation buffer, and sets the completion flag. The result tiles
are then copied back to the matrix by the CPU. The number
of copy operations for an NxN matrix are therefore 4N /B,
where each operation involves a distance matrix element. It
is the time consumed in these copies between the matrix and
the source/destination buffers that we try to minimize/hide
in the next section.



S Optimizing data movement

In this section, we discuss optimizations on the system-
side to extract maximum performance from the FPGA ker-
nel. The optimizations are partly model-driven and partly
from analysis of measured performance of the unoptimized
version which we refer to as FPGA-FW. In FPGA-FW, the
three phases of copy, compute and write-back are done
sequentially with the distance matrix in the original row-
major form.

The entire blocked FW for an NXxN matrix comprises
(N/B)? tiled computations. Each of the BxB tiles in the
matrix gets processed N/B times — once in each round.
Hence, temporal locality can be exploited for copying
across rounds.

The copy time is proportional to the square of the tile
size (B), while the number of compute operations is ®(B?).
However, due to the FPGA kernel performing these oper-
ations in parallel, the compute time may be reduced to a
level where it is comparable to the copy time. This scenario
makes several approaches that would reduce or hide the data
movement costs beneficial to pursue.

5.1 Layout Transformation

T
FPGA-FW (2048) Copy Time
FPGA-FW (2048) Compute Time

3 FPGA-FW (2016) Copy
r FPGA-FW (2016) Compute

2221 FPGA-FW (2080) Copy

smemem FPGA-FW (2080) Compute

FPGA-FW-32 Latency (s)

2048 nodes 2016 nodes 2080 nodes

Figure 6. Conflict misses in FPGA-FW

In FPGA-FW, significant conflict misses occur as suc-
cessive rows of a tile may get mapped to the same cache
line due to size of the matrices being large and a power of
two. Fig. 6 confirms this. This leads to loss of temporal lo-
cality across multiple rounds of the blocked algorithm. For
column-wise copying, apart from temporal locality, spatial
locality may be lost too. In addition, if the size of the cache
line is greater than the size of a single row of the tile as is
the case for 8x8 and 16x16 kernels, memory bandwidth is
not effectively utilized. We therefore transform the layout
of the input matrix so that BxB tiles of the matrix are con-
tiguous in memory in row-major order (Fig. 7).

Figure 7. Transforming the layout of the dis-
tance matrix

After the layout transformation, the number of cache
misses per BxB tile for row-wise as well as column-wise
copying is exactly B2 /L, where L is the cache line size. This
is true for large matrices that are at least twice as large as
the cache size. The cost of transforming the layout of the
matrix is a small fraction of the FW latency and does not
affect performance. Padding the distance matrix is another
alternative, but is not as effective as layout transformation
(Sec. 6).

5.2 Compute/Copy overlap

Even after performing the layout transformation, the
compute time may be comparable to the copy time for ma-
trices that do not completely fit in the cache. As we make
the FPGA responsible for transferring data between itself
and the communication buffer, the host is free while the
FPGA is computing. We overlap the FPGA computation
for a set of k tiles with the write-back time and the copy
time for the previous and next sets respectively. Two buffers
are used in an alternating fashion (each for a maximum of
k tiles). We perform the compute/copy overlap only for
doubly-dependent tiles as the processing of these tiles dom-
inates the compute latency for the 32x32 FPGA kernel (Ta-
ble 2).

| Graph Size || Self-Dep. | Partly-Dep. [ Doubly-Dep. |
1024 0.1% 6.05% 93.85%
8196 0.002% 0.7% 99.22%

Table 2. Percentage of tiles of each kind w.r.t
32x32 FPGA kernel

Optimal overlap chunk. Choosing a small chunk size (k)
for compute/copy overlap would not hide overhead that is
involved in requesting the FPGA to process a set of tiles.
Using a large chunk size would increase the trailing non-
overlapping copy and write-back time (the first copy and
the last write-back cannot be hidden). The optimal value
for the compute/copy overlap chunk, k, is higher for larger
matrices. We determine this in the next section.



Size FPGA-FW-32 FPGA-FW-LT-32 FPGA-FW-LTOV-32
Compute | Copy || Total Compute | Copy [| Total Compute | Copy (non-ov) [[ Total
256 3.61ms 1.41ms 5.02ms 3.66ms 1.40ms 5.07ms 3.66ms 0.43ms 4.60ms
512 27.86ms | 23.48ms || 53.36ms 27.87ms | 22.58ms || 50.46ms 28.68ms 1.29ms 31.05ms
1024 0.22s 0.21s 0.43s 0.22s 0.19s 0.41s 0.23s 0.01s 0.24s
2048 1.74s 3.01s 4.75s 1.75s 1.80s 3.56s 1.78s 0.03s 1.82s
4096 14.02s 28.75s 42.77s 14.02s 14.40s 28.43s 14.39s 0.14s 14.55s
8192 112.06s | 282.20s 394.27s 112.09s | 115.80s 227.89s 115.25s 0.68s 115.98s

Table 3. Latency breakdown for 32x32 FPGA kernel with various optimizations

6 Measurements and Analysis

The measurements for the general-purpose processor
case were taken on a 2.2 GHz 64-bit AMD Opteron (as
found on the XD1) with a 64 KB L1 data cache and a 1
MB L2 cache with a cache-block size of 64 bytes. GCC
3.3 with “-O3” turned on was used for compilation. The
FPGA on the XD1 is a Xilinx Virtex-II Pro XC2VP50. The
FPGA design was clocked at 170 MHz. The version of Cray
User FPGA API used was 1.3. All measurements were for
16-bit edge weights. We use the following abbreviations to
identify CPU and FPGA-based FW implementations with
different optimizations throughout this section.

CPU-FW: Simple Floyd-Warshall (FW) implementation
on the Opteron (three-way nested loop shown in
Fig. 2).

CPU-FW-OPT: Optimized blocked implementation of
FW on the Opteron (block size empirically optimized
for best performance) [15]. We copy tiles to a contigu-
ous buffer to eliminate conflict misses.

FPGA-FW: FPGA-based implementation for FW for an
NxN matrix on the XD1 FPGA without any optimiza-
tions.

FPGA-FW-LT: FPGA-FW with layout transformation as
explained in Sec. 5.1.

FPGA-FW-LTOV: FPGA-FW-LT with compute and
copy overlapped as explained in Sec. 5.2.

A suffix of 8, 16 or 32 is used to distinguish implemen-
tations using kernels that process tiles of that size. In all
figures and tables, copy time refers to the sum total of both,
the copy time and the write-back time. All speedup fac-
tors mentioned in this section are over the optimized CPU
implementation (CPU-FW-OPT).

For graphs with up to 256 nodes, the distance matrix and
the communication buffer completely fit in the L2 cache
(256%x2x5 bytes < 1 MB). Hence, FPGA-FW, FPGA-FW-
LT and FPGA-FW-LTOV perform equally well as seen in
Table 3. However, there is a sudden increase in copy time
from 256 nodes to 512 nodes, and performance drops from
there on for FPGA-FW and FPGA-FW-LT (Fig. 10).

6.1 Effect of Layout Transformation

By operating on the bricked layout of the distance ma-
trix, we find that the copy time for large graphs is cut down
by more than two times. As shown in Table 3, the copy time
for FPGA-FW-LT increases consistently by eight times as
the size of the problem doubles, as opposed to the way it
does for FPGA-FW. This is along expected lines (Sec. 4.2).

6.2 Effect of compute/copy overlap

450

T
——— FPGA-FW-32 Copy Time

e FPGA-FW-32 Compute Time

FPGA-FW-LT-32 Copy Time

FPGA-FW-LT-32 Compute Time
FPGA-FW-LTOV-32 Non-overlapped Copy Timg
350 FPGA-FW-LTOV-32 Compute/Copy Overlapped

400 +

300 E

o 8192
Matrix Size

Figure 8. Copy/compute time breakdown with
different optimizations

Even after the layout transformation, for graphs with 512
nodes or more, the copy time is comparable to the compute
time. The compute/copy overlap thus leads to a speedup by
a factor of two hiding the copy time completely (Fig. 8). As
far as the size of overlap chunk is concerned (discussed in
Sec. 5.2), empirically we find that a value of 32 works well
for most problem sizes (Fig. 9). Thus, the total communi-
cation buffer requirements (including the alternating buffer)
are: 2 x4 xk* B %2 bytes = 512 KB.

For CPU-FW-OPT, the copy time is a very small frac-
tion of the total latency (about 1%) for all problem sizes
(Table 4). The compute and copy times for CPU-FW-OPT
increase along expected lines (proportional to the cube of



Size CPU-FW-OPT FPGA-FW-LTOV-32 Speedup
Compute | Copy || Total Compute | Copy || Total

256 69.6ms 0.6ms 70.2ms 3.7ms 0.4ms 4.6ms 15.2x
512 480.5ms | 5.5ms 485.9ms 28.7ms 1.3ms || 31.0ms 15.7x
1024 3.63s 0.05s 3.67s 0.23s 0.01s 0.24s 15.7x
2048 28.04s 0.33s 28.37s 1.78s 0.03s 1.82s 15.6x
4096 220.02s 2.86s 222.89s 14.39s 0.14s 14.55s 15.3x
8192 1739.71s | 21.73s 1761.44s 115.25s | 0.68s || 115.98s 15.2x
16384 13810s 171s 3 hrs 53 min 915s 2.94s 15 min 15.2x

Table 4. Measured performance: comparison with CPU-FW-OPT

20 T T T T T T T

FPGA-FW-LTOV-32 latency (s)

10 L L L L L L L
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Figure 9. Optimal Compute/Copy Overlap
Chunk (for 2048 nodes)

the problem size). As shown in Fig. 10 and Table. 4, after all
optimizations, a speedup of 15x is obtained for graphs with
256 nodes or more. For graphs with less than 256 nodes,
the speedup is on the lower side due to the fact that there
are not large enough number of tiles to be successively pro-
cessed in each round to cover the overhead of making the
compute request to the FPGA.

Fig. 11 shows the final speedup for all problem sizes
obtained by employing the optimized 8x8, 16x16 and the
32x32 FPGA kernels. The measured speedup doubles when
the tile size that is processed in parallel doubles as we have
double the number of parallel operators.

6.3 Sustained GigaOps and Memory Bandwidth

Fig. 12 compares GigaOps performance of the optimized
CPU and FPGA implementations. For GigaOps, we con-
sider add and compare as operations, and is given by:

2N3
Measured FW latency * 109

FW GigaOps = (1)

Fig. 13 shows the bandwidth we measure for the FW ap-

FPGA-FW-32 ——
FPGA-FW-LT-32 ---x--- Ko 7
FPGA-FW-LTOV-32 - - e B T

Speedup

L L L L L L L
32 64 128 256 512 1024 2048 4096
Matrix Size

Figure 10. Measured Speedup over CPU-FW-
OPT

plication. For every BxB tile that is processed, 3B> 16-bit
matrix elements get streamed to the FPGA, and B> matrix
elements are written back. Read, compute and write are
fully pipelined. Hence, the unidirectional read bandwidth
that the FPGA kernel obtains is calculated as:

6N’ B/s
B+ (Compute latency (N nodes))

Read b/w = 2)

The peak GigaOps for the Opteron is 4.4. However, the
sustained GigaOps for CPU-FW-OPT as shown in Fig. 12
is far lower. This is probably due to the compare branch
in the nested code. As the branch depends on input data, it
can never be predicted accurately. The 32x32 FPGA kernel,
having 128 operators, has a theoretical peak computational
rate of 51.2 GigaOps. However, as two-thirds of the time
is spent in pre-computing/shifting pivot row and column el-
ements, the peak performance is reduced to 17.1 GigaOps
which would be possible at the peak bandwidth of 1.6 GB/s
theoretically. However, the bandwidth sustained from the
system to the FPGA with our I/O kernel is much lower at
about 860 MB/s (Fig. 13). FPGA-FW-LTOV-32 thus sus-
tains only 9.23 GigaOps out of 17.1.
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Figure 12. CPU-FW-OPT vs. FPGA-based FW:
Billion OPS performance

It is important to note that overlapping copying of tiles
with the FPGA computation does not lead to a significant
drop in memory bandwidth available to the host. As the
FPGA computation contends with the copy operations for
the memory bus (Fig. 1), the compute time for FPGA-FW-
LTOV-32 is marginally higher than that of FPGA-FW-LT
(Table. 3).

6.4 Performance model

We build a performance model and compare
the predicted results with the measured ones. Let
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Figure 13. Measured read bandwidth from the
XD1 to the FPGA kernel

ton:  Overhead for processing a set of tiles successively

t. : Compute time for a BxB tile

tep: Copy time to source buffer to process a single BxB tile
twp:  Write-back time for a BxB result tile

k : overlap chunk size (number of tiles)

As the overhead for making a compute request to the
FPGA is incurred four times in each of the N/B rounds
(once for each type of tile), the latency for processing an
NxN matrix without overlap is given by:

4N N\
<B) ton + (B) (tcp+tc+twb) (3)

From the compute latencies of FPGA-FW-LT in Table 3,
we determine: #. = 6.68 us, fcp + 1 = 7.1 ps, and 1, =
9.9 us, for B = 32.

With compute copy overlap for doubly-dependent tiles,
we have:

Ly = —3N+—N fon + N 3*ma (testwp +1cp)
X
oV B Bk oh B crytwb cp

+ k (tcp + fwb) 4)

LHO*OV

For large matrices, the f,, factor is negligible in the total
latency. Hence, the compute latency for large matrices is
very accurately modeled by ¢, * (N/B)? as shown in Fig. 14,
for B = 32. The total latency for FPGA-FW-LTOV for large
matrices is captured well by:

N\ 3
L= (B) *max (fe, tep+tp) 5)

Note that 7. o< (B*/I) (Sec. 3.4) and Teps twb < B?. Using the
above equation, we compare the latencies obtained from the
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model for B = 8,16 and 32 in Fig. 15. Note that / = 4 for all
the three kernels.
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Figure 15. FPGA-FW-LTOV latency for 8192
nodes with various kernels: Measured vs.
Model (Eqgn. 5)

6.5 Impact of I/O bandwidth and FPGA resources

The number of elements copied during FPGA-based FW
on an NxN matrix is 4N°/B. A larger tile size would lead
to the complete matrix getting processed in terms of larger
blocks, and so fewer copies. An increase in FPGA area
would increase the tile size that would be processed in par-
allel (B). Thus, a higher value of B would reduce both,
the compute time (due to pipelined parallelism) and copy
time. An increase in I/O bandwidth improves only the com-
pute time as a result of higher doAll parallelism in each PE.
Therefore, an increase in I/O bandwidth from the system

to the FPGA would not help our application beyond a cer-
tain point where the compute time reaches the level of data
movement costs on the system. In fact, with our design on
the XC2VP50, and with the bandwidth we obtain, we reach
this point for larger graphs. We use the model built in the
previous section to illustrate this effect in Fig. 16: greater
I/0 bandwidth beyond a certain point would be desirable
only if more FPGA resources are available.

Speedup
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e o
l'"" l -

; s Block size - B
PE Parallelism -1 °

Figure 16. Impact of FPGA-System Band-
width and FPGA Resources on FPGA-FW-
LTOV for 8192 nodes: Eqn. 5

6.6 Performance improvement on a real dataset

Dynamic Transitive Closure Analysis (DTCA) is a re-
cent algorithmic development for analysis of interaction and
similarity networks of biological systems [17]. Although
the method was developed to evaluate undirected graphs
representing large gene-drug interaction networks in the
study of cancer, it can be used to evaluate any large interac-
tion network. The method incorporates repeated All-Pairs
Shortest-Paths evaluations, which are a computational bot-
tleneck for analysis of very large networks.

A scalable implementation of the DTCA algorithm was
implemented in a software program called Galaxy as part
of the Ohio Biosciences Library [5, 2]. Reading in microar-
ray expression data for several genes and drugs, the pro-
gram utilizes the Floyd-Warshall (FW) algorithm to evalu-
ate for closure on multiple subgraphs of the original inter-
action network. The vertices of the graph represent either
genes or drugs under investigation in the study of new ther-
apies for treating cancer. The weight of an edge in the graph
is calculated using the co-correlation value computed be-
tween each pair of vertices using the microarray expression
data provided for each gene and drug involved in the study.
The distance used for each edge is 1 — ¢%, where ¢ is the
computed co-correlation value.



For the application described above, all edge-weights are
fractions between 0 and 1, with an accuracy up to three
places of decimal desired. Hence, all of these weights can
be scaled to integers between 0 and 1000 making a preci-
sion of 11 bits sufficient. We particularly consider a large
instance of this problem — a graph with 22,740 nodes with
FW called 100 times. The runtime for this particular in-
stance is 21 days on the Cray X1 (using eight vector pipes
on an MSP), and 43 days on the Opteron. With FPGA-FW-
LTOV-32, the run-time is reduced to 2% days.

7 Conclusions

In this paper, we developed optimizations that enable
high application-level speedup for blocked algorithms em-
ploying parallel FPGA kernels. Using a parallel FPGA-
based Floyd-Warshall design developed in [1], the pro-
posed optimizations minimize system-size data movement
costs to effectively solve large instances of the All-Pairs
Shortest-Paths (APSP) problem on a reconfigurable super-
computer. On the Cray XD1, these optimizations improve
the application-level speedup of FPGA-based APSP over
an optimized implementation on a modern general-purpose
processor from 4x to 15x for large graphs. A model was
developed to accurately characterize the latency of the op-
timized FPGA implementation, and provide an insight into
the impact of memory bandwidth and FPGA resources on
the achieved speedup. The techniques developed apply
to other blocked FPGA-accelerated routines for which the
speedup with the FPGA kernel is high enough to make or-
chestrating movement of data on the system critical. With
the current trends in FPGA and CPU performance, these
approaches would become increasingly important for most
FPGA-based routines on reconfigurable supercomputers.
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